
Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

LEGAL NOTICE:

© Copyright 2007 - 2016 NVM Express, Inc. ALL RIGHTS RESERVED.
This erratum to the NVM Express revision 1.2 specification is proprietary to the NVM Express, Inc. (also referred to as

“Company”) and/or its successors and assigns.

NOTICE TO USERS WHO ARE NVM EXPRESS, INC. MEMBERS: Members of NVM Express, Inc. have the

right to use and implement this erratum to the NVM Express revision 1.2 specification subject, however, to the

Member’s continued compliance with the Company’s Intellectual Property Policy and Bylaws and the Member’s

Participation Agreement.

NOTICE TO NON-MEMBERS OF NVM EXPRESS, INC.: If you are not a Member of NVM Express, Inc. and you

have obtained a copy of this document, you only have a right to review this document or make reference to or cite this

document. Any such references or citations to this document must acknowledge NVM Express, Inc. copyright ownership

of this document. The proper copyright citation or reference is as follows: “© 2007 - 2016 NVM Express, Inc. ALL

RIGHTS RESERVED.” When making any such citations or references to this document you are not permitted to

revise, alter, modify, make any derivatives of, or otherwise amend the referenced portion of this document in any way

without the prior express written permission of NVM Express, Inc. Nothing contained in this document shall be deemed

as granting you any kind of license to implement or use this document or the specification described therein, or any of its

contents, either expressly or impliedly, or to any intellectual property owned or controlled by NVM Express, Inc.,

including, without limitation, any trademarks of NVM Express, Inc.

LEGAL DISCLAIMER:

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS. TO

THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NVM EXPRESS, INC. (ALONG WITH THE

CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES

AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NONINFRINGEMENT.

All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property of their

respective owners.

NVM Express Workgroup

c/o Virtual, Inc.

401 Edgewater Place, Suite 600

Wakefield, MA 01880

info@nvmexpress.org

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

NVM Express™ Technical Errata

Errata ID 008

Revision Date 4/19/2016

Affected Spec Ver. NVM Express™ 1.2a

Corrected Spec Ver.

Errata Author(s)

Name Company

John Carroll, Matthew Wilcox Intel

Dave Landsman SanDisk

Judy Brock Samsung

Jim Hatfield Seagate

David Black EMC

Jason Gao, Nadesan Narenthiran HGST

Peter Onufryk PMC

Fred Knight NetApp

Errata Overview

A substantial re-write of the Protection Information section is complete to make the associated
material easier to understand.

It is clarified that a controller may re-use NGUID and EUI64 values when the original namespace
has been deleted.

The error condition to return when an invalid starting NSID is specified for returning a list of NSIDs
is returned.

Clarifications are made to avoid implying that a controller ID of 0h is invalid.

A clarification is made to be clear that the Phase Bit shall be part of the last write done to host
memory for a Completion Queue Entry.

The RTD3 resume and entry latency values may not be supported by compliant revision 1.2+
devices.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Revision History

Revision Date Change Description

12/09/2015 Initial draft

12/16/2015
APST clarification; 4.1 wording changes; added temperature threshold
clarification

12/21/2015 Added the rest of the protection information.

1/7/2016
Updated section 4.6 wording, moved RTD3 changes from Fabrics base diff,
added 1-based convention, removed self-test changes from this ECN (since
they are for a 1.3 feature), added clarification for optional log pages

1/28/2016 Added a few controller identifier = 0h clarifications.

2/3/2016
Minor updates, including updating the overview. Pushing additional changes
to ECN 009.

4/19/2016 Ratified.

Description of Specification Changes

Modify a portion of Section 7.9 (Unique Identifier) as shown below:

The Identify Namespace data structure contains the IEEE Extended Unique Identifier (EUI64) and the
Namespace Globally Unique Identifier (NGUID) fields. EUI64 is an 8-byte EUI-64 identifier and NGUID is a
16-byte identifier based on EUI-64. When creating a namespace, the controller specifies a globally unique
value in the EUI64 or NGUID field (the controller may optionally specify a globally unique value in both fields).
In cases where the 64-bit EUI64 field is unable to ensure a globally unique namespace identifier, the EUI64
field shall be cleared to 0h. When not implemented, these fields contain a value of 0h. A controller may reuse
a non-zero NGUID or EUI64 value for a new namespace after the original namespace using the value has
been deleted.

Modify a portion of Figure 86 (Identify – Data Structure Returned) as shown below:

CNS Value Definition

.

Namespace Management

10h

A list of up to 1024 namespace IDs is returned to the host containing allocated NSIDs with a
namespace identifier greater than the value specified in the Namespace Identifier (CDW1.NSID)
field.

The controller should abort the command with status code Invalid Namespace or Format if
CDW1.NSID is set to FFFFFFFEh or FFFFFFFFh. Note that CDW1.NSID may be cleared to 0h to
retrieve a Namespace List including the namespace starting with NSID of 1h.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Modify a portion of Figure 1 (Asynchronous Event Information – Notice) as shown below:

Value Description

0h

Namespace Attribute Changed: The Identify Namespace data structure for one or more

namespaces, as well as the Namespace List returned when the Identify command is issued with
the CNS field set to 02h, has have changed. Host software may use this event as an indication
that it should read the Identify Namespace data structures for each namespace to determine what
has changed.

Alternatively, host software may request the Changed Namespace List (Log Identifier 04h) to
determine which namespaces in this controller have changed Identify Namespace information
since the last time the log page was read.

 A controller shall not send this event when Namespace Utilization has changed, as this is a
frequent event that does not require action by the host. A controller shall only send this event for
changes to the Format Progress Indicator field when bits 6:0 of that field transition from a non-
zero value to zero or from a zero value to a non-zero value.

Modify section 4.9 as shown below:

A Controller List, defined in Figure 37, is an ordered list of ascending controller IDs. The controller identifier is
defined in bytes 79:78 of the Identify data structure in Figure 90. Unused entries are zero filled.

Figure 37: Controller List Format

Bytes Description

1:0 Number of Identifiers: This field contains the number of controller entries in the list.
There may be up to 2047 identifiers in the list. A value of 0 indicates there are no
controllers in the list.

3:2 Identifier 0: This field contains the NVM subsystem unique controller identifier for the first
controller in the list if present. or 0h if the list is empty (i.e. there are no controllers in the
list).

5:4 Identifier 1: This field contains the NVM subsystem unique controller identifier for the
second controller in the list if present. or 0h if the list contains fewer than two entries.

… …

(N*2+3):
(N*2+2)

Identifier N: This field contains the NVM subsystem unique controller identifier for the
N+1 controller in the list if present. or 0h if the list contains fewer than N+1 entries.

Modify Figure 89 as shown below:

Figure 89: Identify – Command Dword 10

Bit Description

31:16

Controller Identifier (CNTID): This field specifies the controller identifier used as part of some

Identify operations. If the field is not used as part of the Identify operation, then host software shall
clear this field to 0h for backwards compatibility (0h is a valid controller identifier). Controllers that
support Namespace Management shall support this field.

15:08 Reserved

07:00
Controller or Namespace Structure (CNS): This field specifies the information to be returned to

the host. Refer to Figure 86.

Modify a portion of section 4.6 (Completion Queue Entry) as shown below:

An entry in the Completion Queue is at least 16 bytes in size. Figure 25 describes the layout of the first 16
bytes of the Completion Queue Entry data structure. The contents of Dword 0 are is command specific. If a

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

command uses Dword 0, then the definition of this Dword is contained within the associated command
definition. If a command does not use Dword 0, then the field is reserved. Dword 1 is reserved. Dword 2 is
defined in Figure 26 and Dword 3 is defined in Figure 27. Any additional I/O Command Set defined in the future
may use an alternate Completion Queue entry size or format.

If a Completion Queue Entry is constructed via multiple writes, the Phase Tag bit shall be updated in the last
write of that Completion Queue Entry.

Modify section 8.3 (End to End Data Protection) as shown below:

To provide robust data protection from the application to the NVM media and back to the application itself, end-
to-end data protection may be used. If this optional mechanism is enabled, then additional protection
information (e.g. CRC) is added to the logical block that may be evaluated by the controller and/or host software
to determine the integrity of the logical block. This additional protection information, if present, is either the first
eight bytes of metadata or the last eight bytes of metadata, based on the format of the namespace. For
metadata formats with more than eight bytes, if the protection information is contained within the first eight bytes
of metadata, then the CRC does not cover any metadata bytes. For metadata formats with more than eight
bytes, if the protection information is contained within the last eight bytes of metadata, then the CRC covers all
metadata bytes up to but excluding these last eight bytes. As described in section 8.2, metadata, and hence
this protection information may be configured to be contiguous with the logical block data or stored in a separate
buffer.

The most commonly used data protection mechanisms in Enterprise implementations are SCSI Protection
Information, commonly known as Data Integrity Field (DIF), and the Data Integrity Extension (DIX). The primary
difference between these two mechanisms is the location of the protection information. In SCSI Protection
Information DIF, the protection information is contiguous with the logical block data and creates an extended
logical block, while in DIX, the protection information is stored in a separate buffer. The end-to-end data
protection mechanism defined by this specification is functionally compatible with both SCSI Protection
Information DIF and DIX. SCSI Protection Information DIF functionality is achieved by configuring the metadata
to be contiguous with logical block data (as shown in Figure 211), while DIX functionality is achieved by
configuring the metadata and data to be in separate buffers (as shown in Figure 212).

NVM Express supports the same end-to-end protection types as DIF. The type of end-to-end data protection
(Type 1, Type 2, or Type 3) is selected when a namespace is formatted and is reported in the Identify
Namespace data structure.

The Protection Information format is shown in Figure 213 and is contained in the metadata associated with
each logical block. The Guard field contains a CRC-16 computed over the logical block data. In addition to a
CRC-16, DIX also specifies an optional IP checksum that is not supported by NVM Express. The Application
Tag is an opaque data field not interpreted by the controller and that may be used to disable checking of
protection information. The Reference Tag associates logical block data with an address and protects against
misdirected or out-of-order logical block transfer. Like the Application Tag, the Reference Tag may also be
used to disable checking of protection information.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Figure 213: Protection Information Format

8.3.1 The PRACT Bit

The protection information processing performed as a side effect of Read and Write commands is controlled by
the Protection Information Action (PRACT) bit in the command.

8.3.1.1 Protection Information and Write Commands

Figure 214 illustrates provides some examples of the protection information processing that may occur as a
side effect of a Write command.

If the namespace is not formatted with end-to-end data protection, then logical block data and any optional
metadata is transferred from the host to the NVM with no protection information related processing by the
controller.

If the namespace was is formatted with protection information and the PRACT bit is cleared to ‘0’, then logical
block data and metadata, which contains the containing protection information and may contain additional
metadata, are transferred from the host buffer to NVM (i.e., the metadata field remains the same size in the
NVM and the host buffer). As the logical block data and metadata passes through the controller, the protection
information is checked. If a protection information check error is detected, the command completes with the
status code of the error detected (i.e., End-to-end Guard Check, End-to-end Application Tag Check or End-to-
end Reference Tag Check).

If the namespace was is formatted with protection information and the PRACT bit is set to ‘1’, then: logical block
data is transferred from the host to the controller.

1. If the namespace is formatted with Metadata Size equal to 8 (refer to Figure 93), then the logical block
data is transferred from the host buffer to the controller. As the logical block data passes through the
controller, the The controller inserts generates and appends protection information to the end of the
logical block data, and the logical block data and metadata containing protection information are written
to NVM (i.e., the metadata is not resident within the host buffer).

2. If the namespace is formatted with Metadata Size greater than 8, then the logical block data and the
metadata are transferred from the host buffer to the controller. As the metadata passes through the
controller, the controller overwrites the protection information portion of the metadata. The logical block
data and metadata are written to the NVM (i.e., the metadata field remains the same size in the NVM
and the host buffer). The location of the protection information within the metadata is configured when
the namespace is formatted (refer to the DPS field in Figure 90).

0

1

2

3

4

5

6

7

MSB

LSB
Guard

MSB

LSB
Application Tag

MSB

MSB

Reference Tag

Byte

7 6 5 4 3 2 1 0

Bit

LSB

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

When there is additional metadata, the protection information may be transferred as the first eight bytes of
metadata or the last eight bytes of metadata. The location of the protection information is configured when the
namespace is formatted. In this case, the protection information replaces the first eight or last eight bytes of
metadata (i.e., the metadata field remains the same size in NVM as that in the host).

Figure 214: Write Command Protection Information Processing

Host

Controller

NVM

PCIe SSD

LB Data

(a) No Protection Information

Host
LB Data PI

Controller

check

protection

information

NVM

PCIe SSD

LB Data PI

(c) Protection Information with PRACT bit cleared to 0 (i.e., pass)

Host
LB Data

Controller

insert

protection

information

NVM

PCIe SSD

LB Data PI

(d) Protection Information with PRACT bit set to 1 (i.e., insert)

LB Data

Host

Controller

NVM

PCIe SSD

LB Data

(b) No Protection Information with metadata

LB Data MD MD

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Note: In cases (b) and (d) the PI could be before or after the 8 bytes of metadata.

8.3.1.2 The PRACT Bit and Read Commands

Figure 2 illustrates the protection information processing that may occur as a side effect of Compare command
processing. Compare command processing parallels both Write and Read commands. The controller checks
the protection information contained in the command and the protection information read from the NVM.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Figure 2: Protection Information Processing for Compare

Host
LB Data

Controller
*PI Check for end-to-

end protection

*Byte-to-Byte Check

for Comparison

NVM

PCIe SSD

LB Data MD

Protection Information with PRACT bit set to 0 (i.e., pass)

PIMD PI

Behavior like partial Write command with

end-to-end protection

Behavior like partial Read command with

end-to-end protection

Figure 216 provides some examples of illustrates the protection information processing that may occur as a
side effect of Read command processing. The processing parallels Write command processing with the
exception that logical block data flows in the opposite direction. When the PRACT bit is cleared to ‘0’ and the
namespace was formatted with protection information, logical block data and metadata are transferred from
NVM to the host and checked by the controller. When the PRACT bit is set to ‘1’ and the namespace was
formatted with protection information, logical block data and metadata are transferred from the NVM to the
controller. The controller checks the protection information and then removes it from the metadata before
passing the LBA to the host. If the namespace format contains metadata beyond the protection information,
then the protection information is not stripped regardless of the state of the PRACT bit (i.e., the metadata field
remains the same size in the host as that in NVM).

If the namespace is formatted with protection information and the PRACT bit is cleared to ‘0’, then the logical
block data and metadata, which in this case contains the protection information and possibly additional host
metadata, is transferred by the controller from the NVM to the host buffer (i.e., the metadata field remains the
same size in the NVM and the host buffer). As the logical block data and metadata pass through the controller,
the protection information within the metadata is checked. If a protection information check error is detected,
the command completes with the status code of the error detected (i.e., End-to-end Guard Check, End-to-end
Application Tag Check or End-to-end Reference Tag Check).

If the namespace is formatted with protection information and the PRACT bit is set to ‘1’, then:
a) if the namespace is formatted with Metadata Size equal to 8 (see Figure 93), the logical block data

and metadata (which in this case is, by definition, the protection information), is read from the NVM by
the controller. As the logical block and metadata pass through the controller, the protection
information is checked. If a protection information check error is detected, the command completes
with the status code of the error detected (i.e., End-to-end Guard Check, End-to-end Application Tag
Check or End-to-end Reference Tag Check). After processing the protection information, the
controller strips it and returns the logical block data to the host (i.e., the metadata is not resident
within the host buffer);

b) if the namespace is formatted with Metadata Size greater than 8, the logical block data and the
metadata, which in this case contains the protection information and additional host formatted
metadata, is read from the NVM by the controller. As the logical block and metadata pass through
the controller, the protection information embedded within the metadata is checked. If a protection
information check error is detected, the command completes with the status code of the error
detected (i.e., End-to-end Guard Check, End-to-end Application Tag Check or End-to-end Reference
Tag Check). After processing the protection information, the controller passes the logical block data
and metadata, with the embedded protection information unchanged, to the host (i.e., the metadata
field remains the same size in the NVM as within the host buffer).

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Figure 216: Read Command Protection Information Processing

Note: In cases (b) and (d) the PI could be before or after the 8 bytes of metadata.

8.3.1.3 Protection Information for Fused Operations

Protection processing for fused operations is the same as those for the individual commands that make up the
fused operation.

8.3.1.4 Protection Checking with the Compare command

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Figure 215 illustrates the protection information processing that may occur as a side effect of Compare
command processing. Compare command processing parallels both Write and Read commands. The
controller checks the protection information contained in the command and the protection information read from
the NVM.

Figure 215: Protection Information Processing for Compare

Host
LB Data

Controller
*PI Check for end-to-

end protection

*Byte-to-Byte Check

for Comparison

NVM

PCIe SSD

LB Data MD

Protection Information with PRACT bit set to 0 (i.e., pass)

PIMD PI

Behavior like partial Write command with

end-to-end protection

Behavior like partial Read command with

end-to-end protection

8.3.1.5 Control of Protection Information Checking - PRCHK

Checking of protection information consists of the following operations performed by the controller. If bit 2 of
the Protection Information Check (PRCHK) field of the command is set to ‘1’, then the controller compares the
protection information Guard field to the CRC-16 computed over the logical block data. If bit 1 of the PRCHK
field is set to ‘1’, then the controller compares unmasked bits in the protection information Application Tag field
to the Logical Block Application Tag (LBAT) field in the command. A bit in the protection information Application
Tag field is masked if the corresponding bit is cleared to ‘0’ in the Logical Block Application Tag Mask (LBATM)
field of the command.

For Type 1 protection, if bit 0 of the PRCHK field is set to ‘1’, then the controller compares the protection
information Reference Tag field to the computed reference tag. The value of the computed reference tag for
the first LBA of the command is the value contained in the Initial Logical Block Reference Tag (ILBRT) or
Expected Initial Logical Block Reference Tag (EILBRT) field in the command. If the namespace is formatted
for Type 1 or Type 2 protection, the computed reference tag is incremented for each subsequent logical block.
If the namespace is formatted for Type 3 protection, the reference tag for each subsequent logic block remains
the same as the initial reference tag. Unlike SCSI Protection Information Type 1 protection which implicitly uses
the least significant four bytes of the LBA, the controller always uses the ILBRT or EILBRT field and requires
host software to initialize the ILBRT or EILBRT field to the least significant four bytes of the LBA when Type 1
protection is used. In Type 1 protection, the controller should check the ILBRT or EILBRT field; if there is any
miscompare, the command completes with an error of Invalid Protection Information. If the ILBRT or EILBRT
field does not match the least significant four bytes of the LBA, then the controller completes the command with
an Invalid Protection Information status code.

For Type 2 protection, if bit 0 of the PRCHK field is set to ‘1’, then the controller compares the protection
information Reference Tag field from each logical block to the computed reference tag. The computed reference
tag is incremented for each subsequent logical block. The value of the computed reference tag for the first LBA
of the command is the value contained in the ILBRT or EILBRT field in the command. Host software may set
the ILBRT and EILBRT fields to any value.

For Type 3 protection, if bit 0 of the PRCHK field is set to ‘1’, then the command may be aborted with status
Invalid Field in Command. The controller may ignore the ILBRT and EILBRT fields when Type 3 protection is
used because the computed reference tag remains unchanged.

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

Protection checking may be disabled as a side effect of the value of the protection information Application Tag
and Reference Tag fields regardless of the state of the PRCHK field in the command. If the namespace is
formatted for Type 1 or Type 2 protection, then all protection information checks are disabled regardless of the
state of the PRCHK field when the protection information Application Tag has a value of FFFFh. If the
namespace is formatted for Type 3 protection, then all protection information checks are disabled regardless of
the state of the PRCHK field when the protection information Application Tag has a value of FFFFh and the
protection information Reference Tag has a value of FFFF_FFFFh.

Inserted protection information consists of the computed CRC-16 in the Guard field, the LBAT field value in the

Application Tag, and the computed reference tag in the Reference Tag field.

Modify a portion of Section 5.14.1.4 (Temperature Threshold) as shown below:

The default value of the over temperature threshold feature for Composite Temperature is the value in the
Warning Composite Temperature Threshold (WCTEMP) field in the Identify Controller data if WCTEMP is
non-zero; otherwise, it is implementation specific. The default value of the under temperature threshold
feature for Composite Temperature is implementation specific. The default value of the over temperature
threshold for all implemented temperature sensors is FFFFh. The default value of the under temperature
threshold for all implemented temperature sensors is 0h.

If a Get Features command is submitted for this feature, the temperature threshold selected by Command
Dword 11 is returned in Dword 0 of the completion queue entry for that command.

Modify a portion of Figure 114 (Temperature Threshold – Command Dword 11) as shown below:

Bit Description

15:00
Temperature Threshold (TMPTH): Indicates the threshold value to apply (in a Set Features) or

return (in a Get Features) for the temperature sensor and threshold type specified.

Modify a portion of section 5.14.1.2 (Power Management) as shown below:

This Feature allows the host to configure the power state. The attributes are indicated in Command Dword 11.

After a successful completion of a Set Features command for this feature, the controller shall be in the Power
State specified. If enabled, autonomous power state transitions continue to occur from the new state.

If a Get Features command is submitted for this Feature, the attributes specified in Figure 111 are returned in
Dword 0 of the completion queue entry for that command.

Modify bytes 91:84 in Figure 90 (Identify Controller) as shown below:

87:84 M

RTD3 Resume Latency (RTD3R): This field indicates the typical latency in

microseconds resuming from Runtime D3 (RTD3). Refer to section 8.4.4 for test
conditions. Implementations compliant to revision 1.2 or later of this specification
shall report a non-zero value in this field. A value of 0h indicates RTD3 Resume
Latency is not reported.

91:88 M

RTD3 Entry Latency (RTD3E): This field indicates the typical latency in

microseconds to enter Runtime D3 (RTD3). Refer to section 8.4.4 for test
conditions. Implementations compliant to revision 1.2 or later of this specification
shall report a non-zero value in this field. A value of 0h indicates RTD3 Entry
Latency is not reported.

Modify a portion of section 1.5 (Conventions) as shown below:

Technical input submitted to the NVM Express™ Workgroup is subject to the terms of the NVM Express™
Participant’s agreement. Copyright © 2014-16 NVMe™ Corporation.

A 0-based value is a numbering scheme for which the number 0h actually corresponds to a value of 1h and
thus produces the pattern of 0h = 1h, 1h = 2h, 2h = 3h, etc. In this numbering scheme, there is not a method
for specifying the value of 0h. Values in this specifications are 1-based (i.e., the number 1h corresponds to a
value of 1h, 2h=2h, etc.) unless otherwise specified.

Modify a portion of Section 5.10 (Get Log Page command) as shown below:

The Get Log Page command returns a data buffer containing the log page requested.

The Get Log Page command uses the PRP Entry 1, PRP Entry 2, and Command Dword 10 fields. All other
command specific fields are reserved.

There are mandatory and optional Log Identifiers defined in Figure 76 and Figure 77. If a Get Log Page
command is processed that specifies a Log Identifier that is not supported, then the controller should abort the
command with status Invalid Field in Command.

